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1    Introduction 

Measurement error models commonly begin with an underlying model where one or 
more of the independent variables are measured with error. The distinguishing feature 
of a measurement error problem is that we cannot observe those variables which are 
measured with error directly. The goal of measurement error modeling is to obtain 
understanding from the model. Attainment of this goal requires careful analysis. 

This selection problem is from statistical consulting. When I (Xun Lin) was a statis- 
tical consultant in the summer of 1996, one of my clients came up with a problem which 
can be simplified as follows. 

Suppose we have k treatments 11;, i = 1,..., k and n observations from each treat- 
ment. For each treatment II;, i = 1,..., k and each observation j = 1,..., n, we have 
the following model: 

Yij = ßoi + ßiiXij + eij,     Wij = Xij + Uij, (1) 

where {(X^, Uij, e^), 1 < j < n} are independently but not necessarily identically 
distributed random vectors with means (0,0,0) and variances (cra.a.,-,o-uu,-,cr£e,-). For 
i = \,...,k and j = l,...,n, (Xij, Uij, e,j) are independent to each other. But X^ 
cannot be observed, instead we can only observe (W^, Yjj). We assume that for each i, 
cruui is known and axxi > 0. 

A treatment II; is said to be the best if the associated slope parameter ßu is the 
largest among the k slope parameters, otherwise the treatment is said to be nonbest. 
The goal of this selection problem is to select the best treatment from the k treatments. 

Let Q, = {ßj = (ßw,ß\2i ■ ■ ■, ßik)\ßn € R, i = 1,..., k} be the parameter space. Let 
a = (ai,..., ak) be an action, where a; = 0,1, i = 1,..., k. When action a is taken, 
a; = 1 means that treatment II; is selected as the best treatment; otherwise a; = 0 and II; 
is excluded as the nonbest. For i = 1,..., k, let W; = (Wix,..., W;n), Y; = (Yn,..., Yin), 
X = (Xi,..., Xk), and Y = (Y\,..., Yk). Let x be the sample space generated by (W, Y). 
Since the true order of ßu,..., ßu. is unknown, we denote ßx^ < ßX[2] < ... < ß^\- For 
simplicity, we assume that ßi[k] — ß\\k-\\ = 28 > 0. 

A selection rule d(w,y) = (di(w,y),..., <4(w,y)) is a mapping defined on x, where 
^t(w, y) is the probability that given W = w and Y = y, Ü; is selected as the best. Also, 

E,ti <*i(w,y) = 1, for all (w,y) G *. 

We consider the following loss function: 

xip.     \ _ / 1>    if a nonbest treatment is selected, , . 
- ' ~        I 0,    if the best treatment is selected. ^ ' 



2    Formulation of the Selection Procedure 

The population moments of (Wij,Y{j) satisfy 

{l^wi, Hyi) = (0,/3oi)> (3) 

and 

\@wwii @wyii Gyyi) = \&xxi T" Vuuii Pli^xxii Pli  &xxi T CeetJ- (4) 

The sample means (W,-,^) and the sample covariates (Swwi,Swyi,Syyi), where, 
ample, 

for ex- 

n i=i 
(5) 

(6) 

will be the bases of our selection procedure. 

We use estimators of the unknown parameters by replacing the unknown population 
moments with their sample estimators.  For the quantities defined above to be proper 
estimators, a^xi must be positive.   We have a^xi = Sww{ — auui when Swwi — auui is 
positive, otherwise we set a^xi = SyJ-S^. We also have 

n            J   x^wwz        Vuui)      ^wyij       H ^wwi        ^uui ^ *-*? 

~ 1 S'liSyyi,                         otherwise. (V 

Since we take n samples from each treatment, our selection procedure will be d, 

{din{w, y), d2n(w, y), • • •, 4n(w, y)), where 
z(w,y) = 

rl  (™ iA     J ^'      if ßn is *üe largest among the k slope estimates, 
{0,      otherwise, (8) 

when W = w and Y = y are observed. 
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3    Performance of the Selection Procedures 

In this section we study the performance of the selection procedures. We first analyze 
the expected risk of the proposed procedure. 

Definition 1. A sequence of selection procedures {^(w^y)}^ is said to be asymp- 

totically optimal of order en if E^'¥-'L(ß,dn(w,y)) — 0(en), where en is a sequence of 
positive numbers such that lim^oo e„ = 0. 

Denote Pn to be the probability measure generated by the random observations 
(W, Y), and for each (w,y) 6 x, let 

i* = {i\ßii = max ßxj = ßl[k], i = l,...,k}, (9) 

and 

*n = {ilfai = max■ ß!j, i = 1,..., k}. (10) 
I<J<ä 

Then, the expected risk of the proposed selection procedure is 

E™L(£,4(x,y)) (11) 

= EE P„{." = «,*; = ;} 

k      k 

_i     / j     / j     -*■n\l    — I, 1n — Ji Owwi       (Tuui Z> , Jwwj       &uuj ■>      ~    J 

i=l j=l,jfr 

k k . 

i=l j=l,j& 

k k . 

+ /__,     _2-r     -'n't*    = ?) ^n = J' >~>urtuj — ö'uuj  S      ^     J 
*'=1 J=l J¥» 

Jt fc A . ^      . 

S:      / j      / j      "n\Pli       P\i ^ Oj >3urtut        "uut  '->      ~     j ^wwj        ""uuj  ^      Q     J 

k       k a a    ■ 
V   /   j        /   j       -TjlXPlj P\j   ^*   Ö, »-?u,uri "'lltl!    --> ^      ) dlVWJ C«UJ    -^ ~       J 

k k . 



k k 

i=l j=l,j?i l 

k
 k . <T        • 

< l_j     2-j     Pn{ß\i — ß\i > £, Swwi — <Juui > ~^~} 
t=l j=l j^i ^ 

fc       k a 
+ 2_,     Z-*     Pn\P\j — ßlj > 0, Swwj — (Juuj > } 

k 

fc (7    • 
< 2fc ^ Pn{|^lt - ßli\ > 8, Swwi - <Tuui > -^-} 

k 

«=1 ^ 

From above we observe that it suffices to analyze the convergence rates of the fol- 
lowings two sequences: 

*n\dwwi ~ &uui SL      ~    j)     Pn\\ß\i ~ ß\i\ > Ö, Owu;i — <Juut' > }. (12) 

We analyze the rate of convergence under the following conditions. 

3.1    When The a-th Moment Exists (a > 2) 

In this subsection we suppose that the a-th (a > 2) moments of (Xij, Uij, e^) exist, that 
is, 

£|Xi,|a<oo,      E\Uij\a < oo,      E|eij|
a<oo. (13) 

We will show that the expected risk of the proposed selection procedure converges to 0 
at therateof o(n-(a/2-x)). 

We introduce some useful lemmas. The first lemma is well known, a similar result can 
be found in Baum and Katz (1965). 

Lemma 1. Let X\,... ,Xn be independent random variables with mean 0. Suppose for 
a fixed number a > 1, i^X,-!" < oo, for i = 1,..., n, then for any e > 0, 



P{\J2Xt/n\>t} = o(n-^). (14) 

As a consequence of Lemma 1, we have 

Lemma 2. Let Xi,... ,Xn be independent random variables, with mean EX{ = // and 
variance VarX; = <r2, for % = 1,..., n. Also let X = £ £ ^< and S% = ^ £(X,- - X)2. 
Suppose for i = 1,..., n and a fixed number a > 2, E|.X;|a < co, then for any e > 0, 

P{\SZ-a2\>e} = o(n-W-V). (15) 

Proof. 

P{\S2
n-*2\>e}    =    P{\-L-±X2--^-X2-a2\>e} (16) 

il        1   ■ -I To        X 

/£ /6 Zi 

+ P{\X2-lS\>e--l-<T2} 
I      n 

+P{\X2-^\>6-} 

■=   h + h, (17) 

for n large enough, that is, when n > max (2, [^-] + 1), we have ^| > | and | — ^a2 > 
f. From Lemma 1, we have 

h = P{\1-UX?-(v2 + °2))\>l} (18) 

=   o{n-a'2-1) (19) 

and 



h = P{\X*-f\>^} (20) 

=   P{\(X + ^){X-fi)\>^  and  (X + p) > (2(1 + 1)} 

+P{\(X + li)(X-lx)\>i  and   (l + /i)<(2^ + l)} 

<   P{(X-fi)>l} + P{4(2n + l)\(X-ri\>e} 

From Lemma 2, we can see that 

=   otn-^2-1)). 

Moreover, 

-Pn{|Plt — Äi| > ^, "Su/un — <7UU; > ——} (22) 

Oyjyjx (swill £* 

—      -^n\ l&wyi       Pli\^wwi       &uui)\  :_ «    —    j 

n — l n — 1 re — 1 6 

+Pn{|-i-/?li 2 Wg - -!!-.&,.(«,«. + auui)\ > 6^} 
n — I      ~\ n — 1 6 

J=I 

:=   Ji + h + J*. 

For any i = 1,..., k, {WijY(j,j = 1,..., n} are independent random variables with mean 
E(WijYij) = ß\iaxxi. By Holder's inequality, 



E\WijYij\al2 < yß\wi^E\Yifi < oo, (23) 

therefore, we have 

Ji = Pn{\- EiWijYij - ßuaxxi)\ > —6^jp} (24) 
n j=1 n        o 

=   o(nt-a'2-V). (25) 

Since 

%% - ßxiW? (26) 
=   Wi(Yi-ßuWi) 

=   Wi{ßoi + €i + ßnÜi) 
=   ßoiWi + eiWi + ßuXiÜi + ßiiÜ?, 

we observe that 

h = Pn{\ßMWi + tiWi + ßuXiÜi + ßiiÜf - -ßuvuuil > —5^i}    (27) 
n no 

< Pn{\ß*m>—6?zr} n       z4 

+pn{\e-m > ^^f } 

+Pn{\ßuXiÜi\ > —^=4 
n       24 

+Pn{\ßMÜ? ~ -ßli°uui\ > —S^-} 
n n       24 

<    i^l/WI > —^} 
n       z4 

+P.m>J^%}+P.{m>^%} 

+P.{|A,-(£/i!-i<ru„i)|>—i«^f}. 
n n       24 



Then by Lemma 1, we have 

Pnmw.\>—6^}   =   H*-(a-1)).     if^°> nX]HOt   ""    n       24 ' \0, if /30i = 0, 

<     Pn{\ßuU?\>  S-^ - -ßU*uui} n       24       n 

(28) 

iuisi > vV^} = o(n"(a_1))' (29) 

Pn{\Wt\>J^8^} = o(n-(°-% (30) 

PndVS^I > V^T^> = °(""(a_1))' (31) 

Pndv^^l > V V^} = ^"^^ (32) 

^n{|Ä.-(Ö? - -^-)l > —*^r> (33) 
lb it Zi~C 

r21  \  ft — 1 c^xxi 1 

v V    n       24       n 

J3 = p»{|-Ä,-£ wg - ^-(^ + ^„„01 > —s^p} (34) 

=    0(n-(Q/2-1)). 

Hence, by combining the above arguments, we have the following theorem. 



Theorem 1. The selection procedure dn(w,y), defined in (8), is asymptotically optimal 
with convergence rate of order o{n~^al2~1^) under condition (13). That is, 

E^UßMua)) = o(n-(a/2-1}). (35) 

3.2    When The Moment Generating Function Exists 

In this subsection we suppose that the moment generating functions of {A-?-, [/?■, e^} 
exist in a neighbourhood of the origin, that is, for — T <t<T, 

EetX*> < oo,     Eetu?i < oo,     ES> < oo. (36) 

where T is a positive constant. 

We first introduce the following lemma, which can be found in Petrov (1995). 

Lemma 3. Let {X\,..., Xn} be independent random variables with mean EX{ = 0, i = 
1,..., n. Suppose there exist positive constants gi,...,gn and T such that 

Eetx> < e3it2/2      (i = l,...,n) (37) 

for -T < t < T. Let Gn = £?=1 gu then 

The following lemma clarifies the probabilistic meaning of the conditions of Lemma 3. 

Lemma 4.    Let X be a random variable with mean EX = 0.   The following two 
assertions are equivalent: 

(I) There exist positive constants g and H such that 

Eetx < e3t2l2 for -H<t<H, (39) 

(II) There exists a positive constant T such that 

10 



EetA < oo for -T < t < T. (40) 

Proof. It is clear that (I) implies (II). We now prove that (II) also implies (I). If (II) is 
fulfilled, then the random variable X has the moments of all orders, and the following 
relation holds: 

log Eetx = \a2t2 + o{t2) (41) 

as t —*■ 0, where a2 = EX2. For any constant g > cr2, the inequalities logEetX < gt2/2 
and EetX < e9t I2 hold for all sufficiently small t, that is, (I) is true. This completes the 
proof of Lemma 4. As we can see in the proof, we can always set g = 2a2. 

We further assume that the 4-th moments of {Xij, Uij, e^} are bounded, that is, there 
exists a positive constant C such that 

EX±<C, EU±<C, Ee%<C. (42) 

We can see from (42) that EW*, EY* and E{WijYijf are all bounded. 

We analyze Pn{Swwi - auui < £f1-} first. 

_      *n \ I dwwi       &wwi \ ;_ ~     j 

<      Pn{\l-±W*-*wwi\>^
e-} 

+Pn{\W2\ > e- - l-a2} 
I     n 

=    Pi\l-tW3-°™)\>\) 

+P{\m\ > yf} 
:=   Ki+K2, (44) 

for n large enough, that is, when n > max (2, [^-] + 1), we have ^f > | and | — \a2 > 
f. Since for j = 1,..., re, E{W%j - awwi) = 0 and for -T/2 < t <T/2, 

11 



Eem?, < £el'(*;+^)2l < E(e2^xle2^) = E(e2^xh)E(e2^ < oo. (45) 

By Lemma 3 and Lemma 4, we have 

*I = ^{£B^-*™)I>|} (46) 
71 3=1 * 

r c-(n^/32G„))      ife<2TGn/n, 
~   \e-(T^n, \fe>2TGn/n, 

where Gn is twice the sum of the re variances of (W2j — <rwwi), j = l,...,n.   Since 
(EW*j,j = 1,..., re) are bounded, (?„ = 0(re). Therefore, 

re-(^2/32Gn\      ife<2T(?n/re, 
"    \e-(T£/8)", iie>2TGJn, 

where c*Kx is a positive constant. Similarly, for — T <t<T, 

Eem» < Ee^ < Ee^w^) < oo. (48) 

K* = P{\Wi\>^} (49) 

0(e-c*<2n), 

where c*K-2 is also a positive constant. 

Next we consider Pn{\ßu - ßu\ > <5, Swwi - auui > ^-}- We have 

Pn{\ß\i — ß\i\ > ö, Swwi — cruui > —z~} (50) 

12 



n — l-, n — l 6 

+Pn{\-^-WiYi - -^—ßuWf - -±-ßu<Tuui\ > s^r) 
n — l n — l n—l 6 

+pn{\-L-ßu J2 wg - -4T/3U((7,„- + fftMM-)l > ^} 
IV X •__ -I ill. \J 

:=   L\ -\- Li2 -\- Lz- 

For any i = 1,...,&, {W^lij,; = l,...,n} are independently but not necessarily 
identically distributed random variables. By Cauchy-Schwarz's inequality, we have, for 
-T/2 < t < T/2, 

EetwtjYt] < Ee\twt]Y,}\ < ^1*1-%-"- < V£e«£el^ < oo. (51) 

Besides, for each i and j, the variance of WijYij is bounded, therefore, 

£i = Pn{\- fXWijYij - ßltaxxi)\ > ?—±6?fi} (52) 
n j=l n        b 

=   0(e-c^), (53) 

where c£   is a positive constant. Next we analyze L2 and Z3. Similarly, 

£2<P4I/W>—<^?} (54) 
n        Z4 

+ft{|«l > ^^> + i>.{|*il > f^) 

n n       z4 
=   0(e-c*2n), (55) 

and 

^3 = Pnil-A," E Wg - Ai(<7.« + AT,,«-)!  >  !L-^^} (56) n     J=1 n        o 

=   0{e-cUn\ (57) 

13 



where c£2 and c23 are positive constants.   Hence, by the above argument, if we set 
c* = min(c|fi,Cj(:2,c21,c22,C£3), then c* > 0. We have the following theorem. 

Theorem 2. The selection procedure dn(w,y), defined in (8), is asymptotically optimal 
with convergence rate of order 0(e~c*n) under conditions (36) and (42). That is, 

E^'y-)L(ß,dn(Y!,y)) = 0(e-c'n). (58) 

We consider two special situations next. 

Two special situations. 

1. {(Xij,Uij,6ij), 1 < j < n} are normally distributed. In this case, {(X{j, Uij, tij)} 
are i.i.d. A^3((0,0,0),diag(cr^,o-UUJ-,(7eei)). Since (Xj/<rr«, Uyauui, e^/cr^) are x2 dis- 
tributed and the moment generating functions of them exist in a neighbourhood of 0, 
and the 4-th moments of {(Xij, Uij, e,-j)} are also bounded, by Theorem 2, we have that, 
in the normal case, the selection procedure rfn(w,y), defined in (8), is asymptotically 
optimal with the rate of convergence of order 0(e~c*n). 

2. {(Xij,Uij,eij),l < j < n} are bounded. Then conditions (36) and (42) always hold 
and therefore, the selection procedure dn(w,y) is asymptotically optimal with conver- 
gence rate of order 0(e~c*n). 

4    Simulations 

We carried out a simulation study to investigate the preformance of the selection proce- 
dure dn. The expected risk E(-'^'L(ß,dn(w,y)) is used as measure of the performance 
of the selection rule. For any observations (W, Y), let 

. . _ ( 1,      if we make a wrong selection, , Q, 
I 0,      if we make a correct selection. 

Then, by the law of large numbers, the sample mean of Z>(W,Y), based on our 
observations, can be used as an estimator of the expected risk E^~-L(ß,dn(w,y)). 

The simulation scheme is described as follows: 

1. For each j = l,...,n and each i=l, 2 and 3, we generated independent random 
observations (Xij, Uij, e,-j) from multivariate normal iV3((0, 0,0)T, di&g(crxxi, <Tuui, <x££;)). 

2. Let Wij = Xij + Uij and Y{j = ßoi + ßuXn + etj. 

14 



3. Based on (Wij,Y{j), we obtained the estimators of ßu, then made the selection and 
computed D(W,Y). 

4. Step 1, 2 and 3 were repeated 4000 times.  The average of D(W,Y) based on the 
4000 repetitions, which is denoted by Dn, is used as an estimator of the expected risk 

The results are listed for the case where 

&xxl — &xx2 — Cn3 — ij 

C'Wl = &uu2 = Cutä — 15 

Ccel = C«2 = cr«3 = 0.25, 

ß01 = ß02 = ß03 = o, 
Äi = 0,/?12 = 1,/?13 = 2. 

and 

n = 5,10,15,20,30,40,50,100. 

From the results of the simulation (see the last page), we can observe that the values 
of Dn decrease quite rapidly as n increases, for n < 100. This supports Theorem 2 that 
the rate of convergence is of order o(e~c*n). 
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n Dn 

5 0.250 

10 0.090 

15 0.030 

20 0.003 

30 0.001 

40 0.001 

50 0.000 

100 0.000 

Simulation 

c a 
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